Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số
\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right)\) với t ∈ ℤ và 0 < t ≤ 365.
a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?
b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì \( - 1 \le \sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) \le 1\) nên \( - 2,83 \le 2,83\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) \le 2,83\), do đó
\(12 - 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) \le 12 + 2,83\)
hay \(9,17 \le 12 + 2,83\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) \le 14,83\,\,\,\forall t \in \mathbb{R}\).
a) Ngày thành phố A có ít giờ ánh sáng mặt trời nhất ứng với \(\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) = - 1\)
\( \Leftrightarrow \frac{{2\pi }}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = - \frac{4} + 365k\,\,\left( {k \in \mathbb{Z}} \right)\)
Vì 0 < t ≤ 365 nên k = 1 suy ra t = \( - \frac{4}\) + 365 = 353,75.
Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.
b) Ngày thành phố A có nhiều giờ ánh sáng mặt trời nhất ứng với \(\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) = 1\)
\( \Leftrightarrow \frac{{2\pi }}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = \frac{4} + 365k\,\,\left( {k \in \mathbb{Z}} \right)\)
Vì 0 < t ≤ 365 nên k = 0 suy ra t = \(\frac{4}\) = 171,25.
Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.
c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu
\(12 + 2,83\sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) = 10\)
\[ \Leftrightarrow \sin \left( {\frac{{2\pi }}\left( {t - 80} \right)} \right) = - \frac\]
\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}\left( {t - 80} \right) \approx - 0,78 + k2\pi \\\frac{{2\pi }}\left( {t - 80} \right) \approx 3,93 + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Vì 0 < t ≤ 365 nên k = 0 suy ra t ≈ 34,69 hoặc t ≈ 308,3.
Như vậy, vào khoảng ngày thứ 34 của năm, tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |