Bài tập  /  Bài đang cần trả lời

Cho hình thang vuông ABCD có A^=D^ = 900 và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng BID^ = 900.

Cho hình thang vuông ABCD có A^=D^ = 900 và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng BID^ = 900.

1 Xem trả lời
Hỏi chi tiết
12
0
0
CenaZero♡
11/09/2024 15:47:22

Vẽ BH ⊥ DC thì tứ giác ABHD có ba góc vuông là A^=D^=H^= 900 nên nó là hình chữ nhật.

Áp dụng tính chất về cạnh và giả thiết về hình chữ nhật ABHD ta được:

Lại có IE = IC       ( 2 )

Từ ( 1 ), ( 2 ) suy ra HI là đường trung bình của tam giác DCE.

Áp dụng định lý về được trung bình trong tam giác DCE ta được HI//DE do DE ⊥ AC theo giả thiết nên HI ⊥ AC hay tam giác AIH vuông tại I.

+ Trong hình chữ nhật ABHD có

là đường trung tuyến của hai tam giác vuông AIH và BID.

Mặt khác ta lại có:

Điều đó chứng tỏ trong tam giác BID có IO là đường trung tuyến ứng với cạnh huyền và bằng nửa cạnh ấy nên nó là tam giác vuông tại I.

Vậy BID^ = 900

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×