Cho B nằm trên đoạn thẳng AC, AB = 6cm, BC = 24cm. Vẽ về một phía của AC các tia Ax và Cy vuông góc với AC. Trên tia Ax lấy điểm E sao cho EB = 10cm, trên tia Cy lấy điểm D sao cho MD = 30cm. Chứng minh EBDˆ = 900 .
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải:
Áp dụng định lý Py – ta –go và tam giác CDB vuông tại C ta được: B D2 = D C2 + B C2
Hay 302 = D C2 + 242 ⇔ D C2 = 182 ⇔ DC = 18( cm )
Xét Δ BEA và Δ DBC có:
A^=C^=900BEBA=BDBC=53⇒∆BEA~∆DBCc-g-c
Từ định nghĩa về tam giác đồng dạng và tính chất về góc của tam giác vuông DCB. Ta có:
B1^=D1^B2^+D1^=900
⇒ B1ˆ + B2ˆ = 900 ⇒ EBDˆ = 900 (do ABCˆ là góc bẹt)
Vậy EBDˆ = 900
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |