Cho hàm số \(y = - {x^3} + 3{x^2} + 3\left( {{m^2} - 1} \right)x - 3{m^2} - 1\). Hỏi có tất cả bao nhiêu giá trị của tham số thực \[m\] để đồ thị hàm số đã cho có các điểm cực đại và cực tiểu cùng với gốc tọa độ tạo thành tam giác vuông tại \(O?\)
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Dễ thấy \({x_1} = 1 - m\) và \({x_2} = 1 + m\) nên \(A\left( {1 - m; - 2 - 2{m^3}} \right)\) và \(B\left( {1 + m; - 2 + 2{m^3}} \right)\) là hai điểm cực trị của đồ thị hàm số (Điều kiện: \(m \ne 0\)).
Tam giác OAB vuông ở \(O \Leftrightarrow \overrightarrow {OA} \cdot \overrightarrow {OB} = 0 \Leftrightarrow (1 - m)(1 + m) + \left( { - 2 - 2{m^3}} \right)\left( { - 2 + 2{m^3}} \right) = 0\)
\( \Leftrightarrow 1 - {m^2} + 4\left( {1 - {m^6}} \right) = 0 \Leftrightarrow {m^2} = 1 \Leftrightarrow m = \pm 1.{\rm{ }}\)
Do đó có 2 giá trị của giá trị của tham số thực \[m\] thỏa mãn yêu cầu bài toán.
Đáp án: 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |