Cho ∆ADC vuông tại a có đường cao AH, \(\widehat D = 65^\circ \), AH = 3 cm. Trên nửa mặt phẳng bờ DC chứa điểm A vẽ tia Cx song song với AD, trên Cx lấy điểm B sao cho CB = DA. Tính khoảng cách từ B đến AD, độ dài đoạn BD và diện tích tam giác ABD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ BK ⊥ AD
Xét ∆ADC\((\widehat A = 90^\circ ):\widehat {ADC} = 65^\circ \Rightarrow \widehat {ACD} = 25^\circ \)
Khi đó: \(CA = \frac{{\sin \widehat C}} = \frac{3}{{\sin 25^\circ }}\)
Dễ thấy BCAK là hình chữ nhật \( \Rightarrow BK = AC = \frac{3}{{\sin 25^\circ }}(cm)\)và BC = AK
⟹ DA = AK (= BC) ⇒ DK = 2DA
Ta có: \(DA = \frac{{\sin \widehat {CDA}}} = \frac{3}{{\sin 25^\circ }}(cm)\)
\(DK = 2DA = \frac{6}{{\sin 25^\circ }}(cm)\)
Áp dụng định lí Pytago vào ∆BKD vuông tại K có \(B{K^2} + K{D^2} = B{D^2}\)
\( \Leftrightarrow {\left( {\frac{3}{{\sin 25^\circ }}} \right)^2} + {\left( {\frac{6}{{\sin 25^\circ }}} \right)^2} = B{D^2} \Leftrightarrow B{D^2} = \frac{{{{\sin }^2}25^\circ }} \Leftrightarrow BD = \frac{{3\sqrt 5 }}{{\sin 25^\circ }}(cm)\)
Ta có \({S_{ABD}} = {S_{BKD}} - {S_{BAK}} = \frac{2} - \frac{2} = \frac{2}(KD - AK)\)
\( = \frac{2} = \frac{{\frac{3}{{\sin 25^\circ }}.\frac{3}{{\sin 25^\circ }}}}{2} = \frac{{\sin 25^\circ }}(c{m^2})\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |