Chứng minh rằng phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có:
+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [-2; 1] (1)
Mặt khác:
+) f(–2) = m(–2 – 1)3 . [(–2)2 – 4] + (–2)4 – 3 = 13;
+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.
Do đó f (-2).f (1) = 13.(-2) = - 26 < 0 (2)
Từ (1) và (2) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [-2; 1] (*)
+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [1; 2] (3)
Ta lại có:
+) f(2) = m.(2 – 1)3 . (22 – 4) + 24 – 3 = 13;
+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.
Do đó f (2).f (1) = 13.(-2) = - 26 < 0 (4)
Từ (3) và (4) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [1; 2] (**)
Từ (*) và (**) nên suy ra f (x) = 0 cho ít nhất hai nghiệm phân biệt thuộc [-2; 2]
Vậy phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |