Kết quả \(\left( {b\,;\,\,c} \right)\) việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó \(b\) là số chấm xuất hiện trong lần gieo đầu, \(c\) là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình \(\frac{{{x^2} + bx + c}} = 0\,\,(*).\) Xác suất để phương trình \((*)\) vô nghiệm là
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương trình (*) vô nghiệm thì \({x^2} + bx + c = 0\) cũng vô nghiệm.
Điều kiện: \(x \ne - 1\) không có ý nghĩa ở bài toán này.
Khi đó \(\Delta = {b^2} - 4c < 0 \Leftrightarrow {b^2} < 4c.\)
TH1: \(b = 1 \Rightarrow 4c > 1 \Leftrightarrow c > \frac{1}{4} \Rightarrow c \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6} \right\}.\) Suy ra có 6 cách gieo.
TH2: \[b = 2 \Rightarrow 4c > 4 \Leftrightarrow c > 1 \Rightarrow c \in \left\{ {2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6} \right\}.\] Suy ra có 5 cách gieo.
TH3: \(b = 3 \Rightarrow 4c > 9 \Leftrightarrow c > \frac{9}{4} \Rightarrow c \in \left\{ {3\,;\,\,4\,;\,\,5\,;\,\,6} \right\}.\) Suy ra có 4 cách gieo.
TH4: \(b = 4 \Rightarrow 4c > 16 \Leftrightarrow c > 4 \Rightarrow c \in \left\{ {5\,;\,\,6} \right\}.\) Suy ra có 2 cách gieo.
TH5: \(b = 5 \Rightarrow 4c > 25 \Leftrightarrow c > \frac{4} \Rightarrow c \in \emptyset .\)
Vậy xác suất cần tìm là \(P = \frac = \frac.\)
Đáp án: \(\frac.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |