Cho x1,x2 là hai nghiệm của phương trình x2−3x+1=0. Hãy lập một phương trình bậc hai một ẩn có hai nghiệm là 2x1−x22 và 2x2−x12
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương trình x2−3x+1=0 có 2 nghiệm x1,x2(gt) nên áp dụng định lý Viet ta có:
x1+x2=3x1x2=1
Xét các tổng và tích sau:
P=2x1−x222x2−x12=4x1x2−2x13−2x23+x1x22=4x1x2−2x13+x23+x1x22=4x1x2−2x1+x23−3x1x2x1+x2+x1x22=4.1−2.33−3.1.3+12=−31
S=2x1−x22+2x2−x12=2x1+x2−x12+x22=2x1+x2−x1+x22−2x1x2=2.3−32−2.1=−1
Ta có:S2=−12=1≥4P=−124
⇒2x1−x22 và 2x2−x12 là hai nghiệm của phương trình
X2−SX+P=0⇔X2+X−31=0
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |