Cho tam giác ABC có ba góc nhọn AB< AC nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại H
a, Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a,
Ta có BEC^=BFC^=900(gt)⇒ Tứ giác BFEC là tứ giác nội tiếp (tứ giác có 2 đỉnh kề nhau cùng nhìn một cạnh dưới các góc bằng nhau).
Vậy bốn điểm B, C, E,F cùng thuộc một đường tròn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |