Bài tập  /  Bài đang cần trả lời

Cho ∆ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau ở D. Chứng minh: a. ∆BDC cân. b. AD là tia phân giác của góc A và DA là tia phân giác của \(\widehat D\). c. AD ⊥ BC và AD đi qua trung điểm của BC.

Cho ∆ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau ở D. Chứng minh:

a. ∆BDC cân.

b. AD là tia phân giác của góc A và DA là tia phân giác của \(\widehat D\).

c. AD ⊥ BC và AD đi qua trung điểm của BC.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Đặng Bảo Trâm
11/09/2024 16:25:02

a. Do ∆ABC cân \(\widehat {ABC} = \widehat {ACB}\)

\(\widehat {DBC} + \widehat {ABC} = \widehat {DCB} + \widehat {ACB} = 90^\circ \Rightarrow \widehat {DBC} = \widehat {DCB} \Rightarrow \Delta BDC\) cân tại D

b. Ta có ∆BDC cân nên BD = CD

∆ABC cân nên AB = AC

⇒ ∆ABD = ∆ACD (Hai tam giác vuông có các cạnh góc vuông tương ứng bằng nhau)

\( \Rightarrow \widehat {BAD} = \widehat {CAD};\widehat {BDA} = \widehat {CDA} \Rightarrow AD\) là phân giác của \(\widehat A\) và \(\widehat D\)

c. Do ∆ABC cân tại A và AD lầ phân giác \(\widehat A\) nên AD là đường cao đồng thời là đường trung tuyến thuộc cạnh BC của ∆ABC (Trong tam giác cân đường phân giác đồng thời là đường cao, đường trung tuyến và đường trung trực)

⇒ AD ⊥ BC và đi qua trung điểm của BC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×