Chứng minh rằng: Nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau thì tổng bình phương của 2 trung tuyến này bằng bình phương của đường trung tuyến thứ 3.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử ∆ABC có 2 đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ 3. Ta cần chứng minh: \(A{D^2} = B{E^2} + C{F^2}\).
Trên tia đối của tia EF lấy điểm K sao cho EF = FK
Tứ giác AKCF có 2 đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành ⇒ AK // FC. Mà FC ⊥ BE nên BE ⊥ AK (*)
Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của ∆ABC ⇒ EF = \(\frac{1}{2}BC\) và EF // BC hay EK // BD (1)
Mà BD = \(\frac{1}{2}BC\) (gt) nên EF = BD ⇒ EK = BD (do EF = EK theo cách chọn điểm phụ) (2)
Từ (1) và (2) suy ra EKDB là hình bình hành ⇒ EB // DK (**)
Từ (*) và (**) suy ra DK ⊥ AK ⇒ ∆AKD vuông tại K \( \Rightarrow A{K^2} + K{D^2} = A{D^2}\) (theo định lí Py-ta-go)
Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên \(A{D^2} = B{E^2} + C{F^2}\)(đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |