Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn OA sao cho OH = 1 cm. Kẻ dây cung CD vuông góc với AB tại H.
a) Chứng minh: \(\Delta ABC\) vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh \(\Delta BCD\) cân và \(\frac = \frac\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) \(\Delta ABC\) nội tiếp đường tròn đường kính AB
\( \Rightarrow \Delta ABC\) vuông tại C (đpcm)
\( \Rightarrow \)AC2 = AH.AB = (R – OH).
2R = (4 – 1).2.4 = 24
Suy ra \(AC = 2\sqrt 6 \) (cm)
b) \(\Delta OHC = \Delta OHD\)(cạnh huyền – cạnh góc vuông)
Suy ra HC = HD (hai cạnh tương ứng)
\( \Rightarrow \)BH là trung tuyến của \(\Delta BCD\) mà BH cũng là đường cao.
\( \Rightarrow \)\(\Delta BCD\)cân tại B (đpcm)
Ta có: AC\( \bot \)CB \( \Rightarrow \Delta CAE\) vuông tại E
Mà \(\widehat {CBH} = \widehat {EAC}\) (cùng phụ với \(\widehat {CAB}\))
\( \Rightarrow \Delta CAE\)∽\(\Delta HBC\) (g.g)
\( \Rightarrow \frac = \frac\)
MÀ \(\Delta BCD\)cân tại B, BH là trung tuyến.
\( \Rightarrow \)BC = BD và HC = DH
\( \Rightarrow \frac = \frac\) (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |