Cho (O; R) dây MN vuông góc với OA tại trung điểm H của OA. Các tiếp tuyến với đường tròn (O) tại M và N cắt nhau ở B.
a) Chứng minh rằng 3 điểm O, A, B thẳng hàng.
b) Tam giác BMN là tam giác gì? Vì sao?
c) Tính BM theo R.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ΔOMA có MH⊥OA (MH là đường cao)
H là trung điểm của OA ⇒ MH là đường trung tuyến
⇒ ΔOMA cân đỉnh M.
⇒ MO = MA mà OM = OA ⇒ OM = OA = AM
⇒ ΔOMA đều
Ta có: OM = ON = R
⇒ ΔAMN cân đỉnh O có MN⊥OA = H
⇒ OH ⊥ MN
⇒ OH là đường cao
⇒ OH cũng là phân giác của MON^(1)
Xét ΔΔ vuông MOB và ΔΔ vuông NOB ta có:
OB chung
OM = ON = R
⇒ ΔMOB = ΔNOB (cạnh huyền – cạnh góc vuông)
⇒ MOB^=NOB^
⇒ OB là phân giác MON^ (2)
Từ (1) và (2) ⇒ OA, OB cùng là phân giác MON^
⇒ O, A, B thẳng hàng.
b) OA ⊥ MN và OH ∩ MN = H là trung điểm MN
⇒ ΔBMN có BH ⊥ MN; BH là đường cao và BH là đường trung tuyến
⇒ ΔBMN cân đỉnh B.
⇒ MBO^=90°−MOA^=90°−60°=30°
Suy ra: MBN^=2.MBO^=60°
⇒ΔMBN là tam giác đều.
c) MB = MN = 2MH
Áp dụng định lý Pitago vào Δ vuông MOH ta có:
MH2 = AM2 – OH2 = R2 − R22
⇒ MH = R 32
⇒ MB = MN = 2MH = R 3
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |