Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Xét tam giác ABE có:
\[\widehat {BAE} + \widehat {ABE} + \widehat {AEB} = 180^\circ \]
\[\widehat {ABE} = 180^\circ - \widehat {BAE} - \widehat {AEB}\] (1)
Xét tam giác CDE có:
\[\widehat {DCE} + \widehat {DEC} + \widehat {EDC} = 180^\circ \]
\[\widehat {EDC} = 180^\circ - \widehat {DCE} - \widehat {DEC}\] (2)
Mà \(\widehat {BAE} = \widehat {DCE}\) (giả thiết); \(\widehat {AEB} = \widehat {DEC}\) (hai góc đối đỉnh) (3)
Từ (1), (2), (3) ta suy ra \(\widehat {ABE} = \widehat {EDC}\).
Xét ∆ABE và ∆CDE có:
\(\widehat {ABE} = \widehat {EDC}\) (chứng minh trên)
AB = CD (giả thiết)
\(\widehat {BAE} = \widehat {DCE}\) (giả thiết)
Do đó, ∆ABE = ∆CDE (g – c – g).
Suy ra, AE = CE; BE = DE (các cặp cạnh tương ứng)
Vì AE = CE và E nằm giữa A và C nên E là trung điểm của AC;
Vì BE = DE và B nằm giữa D và B nên E là trung điểm của BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |