Bài tập  /  Bài đang cần trả lời

Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng: AB song song với DC.

Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:

AB song song với DC.

1 Xem trả lời
Hỏi chi tiết
10
0
0
CenaZero♡
11/09/2024 19:59:06

Hướng dẫn giải:

Vì ∆AED = ∆BEC nên AE = BE; ED = EC.

Ta có: AC = AE + EC; BD = BE + ED.

Do đó, AC = BD.

Xét ∆ABD và ∆BAC ta có:  

AC = BD (chứng minh trên)

AB chung

AD = CB (giả thiết)

Do đó, ∆ABD = ∆BAC (c – c – c)

Suy ra \(\widehat {ABD} = \widehat {BAC}\) (hai góc tương ứng)

Xét tam giác AEB có:

\(\widehat {ABE} + \widehat {BAE} + \widehat {AEB} = 180^\circ \)

Do đó, \(2\widehat {ABE} = 180^\circ - \widehat {AEB}\) (vì \(\widehat {ABE} = \widehat {BAE}\) do \(\widehat {ABD} = \widehat {BAC}\))

Suy ra \(\widehat {ABE} = \frac{{180^\circ - \widehat {AEB}}}{2}\)  (4)

Xét ∆ACD và ∆BDC ta có:  

AC = BD (chứng minh trên)

CD chung

AD = CB (giả thiết)

Do đó, ∆ACD = ∆BDC (c – c – c)

Suy ra \(\widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)

Xét tam giác DEC có:

\(\widehat {DCE} + \widehat {EDC} + \widehat {DEC} = 180^\circ \)

Do đó, \(2\widehat {EDC} = 180^\circ - \widehat {DEC}\) (vì \(\widehat {EDC} = \widehat {DCE}\) do \(\widehat {ACD} = \widehat {BDC}\))

Suy ra \(\widehat {EDC} = \frac{{180^\circ - \widehat {DEC}}}{2}\) (5)

Lại có, \(\widehat {AEB},\,\,\widehat {DEC}\) là hai góc đối đỉnh nên \(\widehat {AEB} = \widehat {DEC}\) (6)

Từ (4); (5); (6) suy ra \(\widehat {ABE}\) = \(\widehat {EDC}\) hay \(\widehat {ABD} = \widehat {BDC}\).

Mà hai góc này lại ở vị trí so le trong nên AB // CD.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×