Cho tam giác ABC bằng tam giác DEF (H.4.28).
Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Vì ∆ABC = ∆DEF nên
\(\left\{ \begin{array}{l}\widehat {ABC} = \widehat {DEF};\,\,\,\widehat {BAC} = \widehat {EDF};\,\,\widehat {ACB} = \widehat {DFE}\\AB = DE;\,\,BC = EF;\,\,AC = DF\end{array} \right.\)
Vì M là trung điểm của BC nên BM = MC = \(\frac{1}{2}BC\).
Vì N là trung điểm của EF nên EN = NF = \(\frac{1}{2}EF\).
Mà BC = EF (chứng minh trên) nên BM = EN.
Xét ∆ABM và ∆DEN ta có:
BM = EN (chứng minh trên)
AB = DE (chứng minh trên)
\(\widehat {ABM} = \widehat {DEN}\) (do \(\widehat {ABC} = \widehat {DEF}\) chứng minh trên)
Do đó, ∆ABM = ∆DEN (c – g – c).
Suy ra, AM = DN (hai cạnh tương ứng).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |