Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:
Nếu AB = DE; BC = EF và AH = DK thì ∆ABC = ∆DEF;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, \(\widehat {AHB} = 90^\circ \).
Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, \(\widehat {DKE} = 90^\circ \).
Xét ∆ABH và ∆DEK có:
\(\widehat {AHB} = \widehat {DKE} = 90^\circ \) (chứng minh trên)
AB = DE (giả thiết)
AH = DK (giả thiết)
Do đó, ∆ABH = ∆DEK (cạnh huyền – cạnh góc vuông).
Suy ra, \(\widehat B = \widehat E\) (hai góc tương ứng).
Xét ∆ABC và ∆DEF có:
\(\widehat B = \widehat E\) (chứng minh trên)
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó, ∆ABC = ∆DEF (c – g – c).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |