Bài tập  /  Bài đang cần trả lời

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{2}\).

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = 60^\circ \). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = \(\frac{2}\).

1 Xem trả lời
Hỏi chi tiết
32
0
0
Nguyễn Thu Hiền
11/09/2024 20:08:11

Hướng dẫn giải

+ Xét tam giác vuông ABH và tam giác vuông ACH có:

AH: cạnh chung

HB = HC (gt)

Do đó, ∆ABH = ∆ACH (hai cạnh góc vuông).

Suy ra AB = AC.   (1)

Do đó, tam giác ABC cân tại đỉnh A.

⇒ \(\widehat C = \widehat B = \widehat {ABH} = 60^\circ \).

Ta có: \(\widehat {BAC} + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong tam giác).

Suy ra \(\widehat {BAC} = 180^\circ - \widehat B - \widehat C = 180^\circ - 60^\circ - 60^\circ = 60^\circ \).

Khi đó \(\widehat B = \widehat {BAC}\), do đó tam giác ABC cân tại đỉnh C nên AC = BC. (2)

Từ (1) và (2) suy ra AB = AC = BC.

Do đó, ∆ABC đều.

+ Vì H thuộc BC và điểm H nằm giữa điểm B và điểm C, hơn nữa HB = HC, do đó H là trung điểm của BC.

Suy ra \(BH = \frac{2}\).

Mà BC = AB (chứng minh trên).

Vậy BH = \(\frac{2}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×