Cho tam giác ABC. Chứng minh rằng:
a) \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right)\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Áp dụng định lí côsin ta có: cos A = \(\frac{{{b^2} + {c^2} - {a^2}}}\)
Ta có \(S = \frac{1}{2}bc\sin A\), suy ra \(\sin A = \frac{{2{\rm{S}}}}\)
Do đó cot A = \(\frac{{co{\rm{sA}}}}{{\sin {\rm{A}}}} = \frac{{{b^2} + {c^2} - {a^2}}}:\frac{{2{\rm{S}}}} = \frac{{{b^2} + {c^2} - {a^2}}}.\frac{{2{\rm{S}}}} = \frac{{{b^2} + {c^2} - {a^2}}}{{4{\rm{S}}}}\)
Chứng minh tương tự ta có:
\(\cot B = \frac{{{a^2} + {c^2} - {b^2}}}{{4{\rm{S}}}}\); \(\cot C = \frac{{{a^2} + {b^2} - {c^2}}}{{4{\rm{S}}}}\)
Do đó:
\(\cot {\rm{A + cot B + cot C = }}\frac{{{c^2} + {b^2} - {a^2}}}{{4{\rm{S}}}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4{\rm{S}}}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4{\rm{S}}}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\)
Vậy \(\cot {\rm{A + cot B + cot C}} = \frac{{{a^2} + {b^2} + {c^2}}}{{4{\rm{S}}}}\).
b) Áp dụng công thức độ dài đường trung tuyến ta có:
\(m_a^2 = \frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}\), \(m_b^2 = \frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}\) và \(m_c^2 = \frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}\)
Suy ra:
Vậy \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right)\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |