Cho DABC đều cạnh a. Gọi I là trung điểm BC.
a) Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\).
b) Tính \(\left| {\overrightarrow {BA} - \overrightarrow {BI} } \right|\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} } \right| = BC = a\)
b) Ta có \(\left| {\overrightarrow {BA} - \overrightarrow {BI} } \right| = \left| {\overrightarrow {IA} } \right| = I{\rm{A}}\)
Vì I là trung điểm của BC nên BI = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)a
Vì tam giác ABC đều có AI là trung tuyến
Nên AI là đường cao
Hay AI ⊥ BC
Suy ra tam giác AIB vuông tại I
Do đó AI2 = AB2 – BI2
Hay AI = \(\sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\)
Vậy \(\left| {\overrightarrow {BA} - \overrightarrow {BI} } \right| = \frac{{a\sqrt 3 }}{2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |