Cho tam giác ABC có AB = 1, \(\widehat A = 105^\circ ,\widehat B = 60^\circ \). Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED song song với AB. Chứng minh: \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vẽ AH ⊥ BC (H ∈ BC) ; AF ⊥ AC (F ∈ AC) (xem hình)
Từ các dữ kiện đề bài AB = BE = 1, \(\widehat {ABE} = 60^\circ \)⇒ ΔABE đều
AH ⊥ BE ⇒ AH là đường cao cũng là đường trung tuyến nên
BH = BE : 2 = 0,5
Áp dụng định lý Pi–ta–go vào ΔAHB ⊥ H:
AH2 = AB2 – BH2 = AB2 – \({\left( {\frac{2}} \right)^2} = 1 - \frac{1}{4} = \frac{3}{4}\left( 1 \right)\)
\(\widehat {ACB} = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 105^\circ - 60^\circ = 15^\circ \)
\(\widehat {BAF} = \widehat {BAC} - \widehat {FAC} = 105^\circ - 90^\circ = 15^\circ \)
Suy ra: \(\widehat {ACB} = \widehat {BAF}\)
Xét tam giác ABC và tam giác FBA có:
\(\widehat {ACB} = \widehat {BAF}\)
Chung \(\widehat B\)
⇒ ∆ABC ∽ ∆FBA (g.g)
⇒ \(\frac = \frac = \frac = \frac\)(do ED // AB)
Nên AF = AD (2)
Tam giác AFC vuông tại A, đường cao AH nên có hệ thức lượng:
\(\frac{1}{{A{C^2}}} + \frac{1}{{A{F^2}}} = \frac{1}{{A{H^2}}} = \frac{4}{3}\)
Mà AF = AD nên \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |