Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Cách 1.
Ta có: BC ^ SA, BC ^ AB Þ BC ^ SB.
Ta có: SAC^=SBC^ = 90°.
Khi đó 4 điểm S, A, B, C nằm trên mặt cầu đường kính SC.
Bán kính mặt cầu R = SC2 = 2a.
Diện tích mặt cầu ngoại tiếp hình chóp S = 4π(2a)2 = 16πa2.Cách 2.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, do tam giác ABC vuông tại B nên I là trung điểm của AC.
Qua I dựng đường thẳng d vuông góc với (ABC) nên ta được d // SA.
Trong tam giác SAC, dựng đường trung trực của SA cắt d tại O là tâm mặt cầu ngoại tiếp hình chóp S. ABC.
Ta tính được AC = 2a2, SC = 4a.
Bán kính mặt cầu R = OA = 2a2+2a2 = 2a.
Diện tích mặt cầu ngoại tiếp hình chóp S.ABC là:
S = 4π(2a)2 = 16πa2.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |