Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ Oxyz gắn với hình lập phương như hình vẽ bên.
a) Tìm tọa độ các đỉnh của hình lập phương.
b) Tìm tọa độ trọng tâm G của tam giác B'CD'.
c) Chứng minh rằng ba điểm O, G, A thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).
Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).
Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).
Vậy B(1; 0; 1).
Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) ⇒ A(1; 1; 1).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \)⇒ A' (1; 1; 0).
b) Gọi G(xG; yG; zG), ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{3} = \frac{1}{3}\\{y_G} = \frac{3} = \frac{1}{3}\\{z_G} = \frac{3} = \frac{1}{3}\end{array} \right.\).
Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)
Có \(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |