Cho hình tứ diện ABCD có ba cạnh AB, AC, AD đôi một vuông góc và AB = 3, AC = 4, AD = 6. Xét hệ tọa độ Oxyz có gốc O trùng với đỉnh A và các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AC, AD. Gọi E, F lần lượt là trọng tâm của các tam giác ABD và ACD.
a) Tìm tọa độ của các đỉnh B, C, D.
b) Tìm tọa độ của các điểm E, F.
c) Chứng minh rằng AD vuông góc với EF.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Từ giả thiết, ta có B(3; 0; 0), C(0; 4; 0), D(0; 0; 6).
b) E là trọng tâm tam giác ABD với A(0; 0; 0), B(3; 0; 0), D(0; 0; 6).
Do đó, tọa độ điểm E là E(1; 0; 2).
F là trọng tâm tam giác ACD với A(0; 0; 0), C(0; 4; 0), D(0; 0; 6).
Do đó, tọa độ điểm F là F\(\left( {0;\frac{4}{3};2} \right)\).
c) Ta có: \(\overrightarrow {AD} \)= (0; 0; 6) và \(\overrightarrow {EF} \) = \(\left( { - 1;\frac{4}{3};0} \right)\).
Có \(\overrightarrow {AD} \).\(\overrightarrow {EF} \) = 0.(−1) + 0.\(\frac{4}{3}\) + 6.0 = 0
Vậy AD vuông góc với EF.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |