Cho hàm số \(y = \frac\) có đồ thị (C).
Tính tích khoảng cách từ một điểm tùy ý thuộc (C) đến hai đường tiệm cận của nó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac = 1\);
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac = 1\).
Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac = + \infty \);
\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac = - \infty \).
Do đó đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có đường tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang
y = 1.
Lấy M(x0; y0) ∈ (C) với \({y_0} = \frac{{{x_0} + 1}}{{{x_0} - 1}}\).
Ta có: khoảng cách từ M đến đường tiệm cận đứng là d1 = | x0 – 1|, khoảng cách từ M đến tiệm cận ngang là d2 = \(\left| {\frac{{{x_0} + 1}}{{{x_0} - 1}} - 1} \right| = \frac{2}{{\left| {{x_0} - 1} \right|}}\).
Vậy tích khoảng cách là:d1d2 = \(\left| {{x_0}--1} \right|\). \(\frac{2}{{\left| {{x_0} - 1} \right|}}\) = 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |