Bài tập  /  Bài đang cần trả lời

Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C). c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C).

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

1 trả lời
Hỏi chi tiết
13
0
0
Tôi yêu Việt Nam
11/09 22:12:36

a) Tập xác định: D = ℝ.

Ta có: y' = 3x2 – 6x2

           y' = 0 ⇔ 3x2 – 6x2 = 0 ⇔ x = 0 hoặc x = 2.

Hàm số đồng biến trên khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại điểm x = 0 và y= y(0) = 2.

Hàm số đạt cực tiểu tại điểm x = 2 và yCT = y(2) = −2.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)

Ta có bảng biến thiên như sau:

Đồ thị hàm số đi qua các điểm: (3; 2); (2; −2); (−1; −2); (0; 2).

Đồ thị hàm số có tâm đối xứng là điểm (1; 0).

Đồ thị hàm số như sau:

b) Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).

Ta có: y'(1) = −3.

Vậy phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó là:

y =  y'(1)(x – 1) + y(1)

   = −3(x – 1) + 0

   = −3x + 3 (∆).

Ta có: y' = 3x2 – 6x = 3(x2 – 2x + 1) – 3 = 3(x – 1)2 – 3 ≥ −3 với mọi x.

Vậy ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Ta có: x3 – 3x2 – m = 0 ⇔ x3 – 3x2 + 2 = m + 2.

Vậy phương trình x3 – 3x2 – m = 0 là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng y = m + 2. Suy ra, phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = m + 2 cắt đồ thị (C) tại 3 điểm phân biệt, điều này tương đương với −2 < m + 2 < 2 ⇔ −4 < m < 0.            

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư