Giá sách của Dũng có hai ngăn. Ngăn trên có 3 cuốn tiểu thuyết của các nhà văn Việt Nam và 2 cuốn tiểu thuyết của các nhà văn nước ngoài. Ngăn dưới chứa 4 cuốn tiểu thuyết của các nhà văn Việt Nam và 1 cuốn tiểu thuyết của nhà văn nước ngoài.
Dũng chọn một cuốn sách để mang theo khi đi du lịch theo cách sau: Tung một con xúc xắc cân đối. Nếu số chấm xuất hiện là 1 hoặc 2 thì chọn ngăn trên, nếu trái lại thì chọn ngăn dưới. Sau đó từ ngăn đã chọn lấy ngẫu nhiên một cuốn sách. Biết rằng cuốn sách Dũng chọn được là cuốn tiểu thuyết của nhà văn nước ngoài. Tính xác suất để cuốn sách thuộc ngăn trên.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi A là biến cố: “Cuốn sách thuộc ngăn trên”.
B là biến cố: “Cuốn sách là cuốn tiểu thuyết của nhà văn nước ngoài”.
Do đó, P(A | B) là xác suất lấy được cuốn sách thuộc ngăn trên là cuốn tiểu thuyết của nhà văn nước ngoài.
Ta có: P(A) = \(\frac{1}{3}\), P(B | A) = \(\frac{2}{5}\),
P(\(\overline A \)) = \(\frac{2}{3}\), P(B | \(\overline A \)) = \(\frac{1}{5}\).
Từ đó theo công thức Bayes ta có:
P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\left( {\frac{1}{3}.\frac{2}{5}} \right):\left( {\frac{1}{3}.\frac{2}{5} + \frac{2}{3}.\frac{1}{5}} \right)\) = \(\frac{1}{2}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |