Bài tập  /  Bài đang cần trả lời

Có hai chuồng thỏ. Chuồng I có 12 con thỏ trắng và 13 con thỏ nâu. Chuồng II có 14 con thỏ trắng và 11 con thỏ nâu. Tung một con xúc xắc cân đối. Nếu xuất hiện mặt 6 chấm thì ta chọn chuồng I, nếu trái lại ta chọn chuồng II. Từ chuồng chọn được bắt ngẫu nhiên một con thỏ. a) Giả sử bắt được con thỏ trắng. Tính xác suất để đó là con thỏ của chuồng II. b) Giả sử bắt được con thỏ nâu. Tính xác suất để đó là con thỏ của chuồng I.

Có hai chuồng thỏ. Chuồng I có 12 con thỏ trắng và 13 con thỏ nâu. Chuồng II có 14 con thỏ trắng và 11 con thỏ nâu. Tung một con xúc xắc cân đối. Nếu xuất hiện mặt 6 chấm thì ta chọn chuồng I, nếu trái lại ta chọn chuồng II. Từ chuồng chọn được bắt ngẫu nhiên một con thỏ.

a) Giả sử bắt được con thỏ trắng. Tính xác suất để đó là con thỏ của chuồng II.

b) Giả sử bắt được con thỏ nâu. Tính xác suất để đó là con thỏ của chuồng I.

1 Xem trả lời
Hỏi chi tiết
31
0
0
Tô Hương Liên
11/09 22:12:22

a) Gọi A là biến cố: “Chọn được chuồng II”.

           B là biến cố: “Bắt được con thỏ trắng”.

Do đó, P(A | B) là xác suất bắt được con thỏ trắng là con thỏ ở chuồng II.

           \(\overline A \) là biến cố: “Chọn được chuồng I”.

           \(\overline B \) là biến cố: “Bắt được con thỏ nâu”.

Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(B | A) = \(\frac\); P(B | \(\overline A \)) = \(\frac\).

Theo công thức Bayes, ta có:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac\).

b) Ta cần tính P(\(\overline A \) | \(\overline B \)) là xác suất chọn được thỏ nâu ở chuồng I.

Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(\(\overline B \) | \(\overline A \)) = \(\frac\), P(\(\overline B \) | A) = \(\frac\).

Theo công thức Bayes, ta có:

P(\(\overline A \) | \(\overline B \)) = \(\frac{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right)}}{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right) + P\left( A \right).P\left( {\overline B |A} \right)}}\) = \(\frac\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×