Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và đáy bằng 30°. Thể tích khối chóp S.ABC bằng ?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi H là hình chiếu của S lên mặt phẳng (ABC). Khối chóp S.ABC đều nên H là trọng tâm ∆ABC.
Gọi I là trung điểm của BC.
Xét ∆ABI có: \(AI = \sqrt {A{B^2} - B{I^2}} = {\sqrt {{a^2} - \left( {\frac{a}{2}} \right)} ^2} = \frac{{a\sqrt 3 }}{2}\).
Vì H là trọng tâm ∆ABC nên: \(AH = \frac{2}{3}AI = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\)
Lại có: AH là hình chiếu của SA lên mặt phẳng (ABC)
\( \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,AH} \right) = \widehat {SAH} = 30^\circ \).
Xét ∆SAH: \(SH = \tan 30^\circ .AH = \frac{{\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3} = \frac{a}{3}\)
\({S_{\Delta ABC}} = \frac{1}{2}AI.BC = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)
Vậy \({V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.\frac{a}{3} = \frac{{{a^3}\sqrt 3 }}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |