Bài tập  /  Bài đang cần trả lời

Cho hình vuông ABCD, I là giao điểm của hai đường chéo AC, BD. E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Q, N lần lượt là giao điểm của AC với HE và AC với GF; M, P lần lượt là giao điểm của BD với EF và BD với GH (Hình 17). Phép quay thuận chiều 90° tâm I có giữ nguyên các tứ giác EFGH và tứ giác MNPQ hay không? Vì sao?

Cho hình vuông ABCD, I là giao điểm của hai đường chéo AC, BD. E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Q, N lần lượt là giao điểm của AC với HE và AC với GF; M, P lần lượt là giao điểm của BD với EF và BD với GH (Hình 17). Phép quay thuận chiều 90° tâm I có giữ nguyên các tứ giác EFGH và tứ giác MNPQ hay không? Vì sao?

1 Xem trả lời
Hỏi chi tiết
6
0
0
Phạm Văn Bắc
11/09 22:51:32

⦁ Vì I là giao điểm của hai đường chéo AC, BD của hình vuông ABCD nên I là trung điểm của AC và BD.

Vì E, I lần lượt là trung điểm các cạnh AB, AC nên EI là đường trung bình của ∆ABC.

Suy ra EI // BC và \(EI = \frac{1}{2}BC.\)

Chứng minh tương tự, ta cũng có IG là đường trung bình của ∆BCD. Suy ra IG // BC và \(IG = \frac{1}{2}BC.\)

Do đó IE // BC // IG và IE = IG.

Theo tiên đề Euclid, qua I có hai đường thẳng IE và IG cùng song song với BC nên ba điểm E, I, G thẳng hàng. Lại có IE = IG nên I là trung điểm của EG.

Chứng minh tương tự ta cũng có I là trung điểm của HF.

Do đó tứ giác EFGH là hình bình hành.

Ta có I là trung điểm của EG và HF nên EG = 2EI và HF = 2IF.

Mà BC = 2EI, CD = 2IF và BC = CD (do ABCD là hình vuông) nên EG = HF.

Do đó hình bình hành EFGH là hình chữ nhật.

Mặt khác, IE // BC, IF // CD và BC ⊥ CD nên IE ⊥ IF hay EG ⊥ HF.

Suy ra hình chữ nhật EFGH là hình vuông và I là giao điểm hai đường chéo.

Như vậy, phép quay thuận chiều 90° tâm I giữ nguyên hình vuông EFGH.

⦁ Ta có E, F lần lượt là trung điểm của AB, BC nên EF là đường trung bình của tam giác, do đó EF // AC hay EM // AI.

Xét ∆ABI có E là trung điểm của AB và EM // AI nên EM là đường trung bình của tam giác, do đó M là trung điểm của BI, nên \(MI = \frac{1}{2}BI\)mà \(IB = ID = \frac{1}{2}BD\) nên \(IM = \frac{1}{4}BD.\)

Chứng minh tương tự ta có \(IM = IP = \frac{1}{4}BD;\,\,IN = IQ = \frac{1}{4}AC\)

Mà AC = BD nên IM = IN = IP = IQ và MP = NQ.

Do đó MNPQ là hình chữ nhật, lại có MP ⊥ NQ (do AC ⊥ BD) nên hình chữ nhật MNPQ là hình vuông có I là giao điểm hai đường chéo.

Như vậy, phép quay thuận chiều 90° tâm I giữ nguyên hình vuông MNPQ .

Vậy phép quay thuận chiều 90° tâm I giữ nguyên các tứ giác EFGH và MNPQ.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×