Cho biết sđAB⏜=sđBC⏜=sđCA⏜ và OB = R. Độ dài cạnh BC là
A. \(R\sqrt 3 .\)
B. \(\frac{{R\sqrt 3 }}{2}.\)
C. \(R\sqrt 2 .\)
D. \(\frac{{R\sqrt 3 }}{3}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: A
Ta có: sđAB⏜+sđBC⏜+sđCA⏜=360°
Suy ra 3⋅sđBC⏜=360° nên sđBC⏜=120°, hay BOC^=120°.
Xét ∆OBC cân tại O (do OB = OC) nên đường cao OH đồng thời là đường trung tuyến và đường phân giác của tam giác, do đó BC = 2BH và \(\widehat {BOH} = \frac{1}{2}\widehat {BOC} = \frac{1}{2} \cdot 120^\circ = 60^\circ .\)
Xét ∆OBH vuông tại H, ta có:
\(BH = OB \cdot \sin \widehat {BOH} = R \cdot \sin 60^\circ = \frac{{R\sqrt 3 }}{2}.\)
Như vậy, \(BC = 2BH = 2 \cdot \frac{{R\sqrt 3 }}{2} = R\sqrt 3 .\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |