Bài tập  /  Bài đang cần trả lời

Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4. Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với n ∈ℕ*, hoặc dưới dạng 2n + 1 với n ∈ℕ.

Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4.

Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với n ∈ℕ*, hoặc dưới dạng 2n + 1 với n ∈ℕ.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Tôi yêu Việt Nam
12/09/2024 10:08:58

Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị nên nếu số thứ nhất là:

a = 2n − 1 (n ∈ℕ*)

Thì số thứ hai là b = a + 2 = 2n + 1

Khi đó:

ab + 1 = (2n − 1)(2n + 1) + 1 = (4n2 + 2n − 2n − 1) + 1 = 4n2

Rõ ràng 4n2 chia hết cho 4 nên ta có điều phải chứng minh.

Chú ý. Nếu viết hai số lẻ liên tiếp là a = 2n + 1 và b = a + 2 = 2n + 3 (n ∈ℕ) thì:

ab + 1 = (2n + 1)(2n + 3) + 1 = 4(n2 + 2n + 1) ⋮ 4

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×