Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4.
Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với n ∈ℕ*, hoặc dưới dạng 2n + 1 với n ∈ℕ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị nên nếu số thứ nhất là:
a = 2n − 1 (n ∈ℕ*)
Thì số thứ hai là b = a + 2 = 2n + 1
Khi đó:
ab + 1 = (2n − 1)(2n + 1) + 1 = (4n2 + 2n − 2n − 1) + 1 = 4n2
Rõ ràng 4n2 chia hết cho 4 nên ta có điều phải chứng minh.
Chú ý. Nếu viết hai số lẻ liên tiếp là a = 2n + 1 và b = a + 2 = 2n + 3 (n ∈ℕ) thì:
ab + 1 = (2n + 1)(2n + 3) + 1 = 4(n2 + 2n + 1) ⋮ 4
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |