Trong một kì thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kì thi, người ta nhận thấy rằng: với hai thí sinh bất kì luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải được. Chứng minh rằng:
a) Nếu có một bài toán mà mọi thí sinh đều không đạt giải được thì phải có một bài toán khác mà mọi thí sinh đều giải được
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Không mất tính tổng quát, giả sử mọi thí sinh đều không giải được bài toán A.
- Nếu mọi thí sinh đều không giải được bài toán B thì từ giả thiết ta có mọi thí sinh đều giải được bài toán C.
- Nếu mọi thí sinh đều giải được bài toán B và bài toán C thì ta có mọi thí sinh đều giải được bài toán B, bài toán C.
- Nếu có một thí sinh chỉ giải được một bài toán, giả sử giải được bài toán B. Xét học sinh này với tất cả các học sinh còn lại. Theo giả thiết, có mọi thí sinh đều giải được bài toán B.
Vậy nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà mọi thí sinh đều giải được.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |