Bài tập  /  Bài đang cần trả lời

Cho 2 tập hợp \(M = \left[ {2m - 1;2m + 5} \right]\) và \(N = \left[ {m + 1;m + 7} \right]\)(với m là tham số thực). Tính tổng tất cả các giá trị của m để hợp của 2 tập hợp M và N là 1 đoạn có độ dài bằng 10.

Cho 2 tập hợp \(M = \left[ {2m - 1;2m + 5} \right]\) và \(N = \left[ {m + 1;m + 7} \right]\)(với m là tham số thực). Tính tổng tất cả các giá trị của m để hợp của 2 tập hợp M và N là 1 đoạn có độ dài bằng 10.
1 Xem trả lời
Hỏi chi tiết
29
0
0
CenaZero♡
12/09/2024 11:36:47

Lời giải:

Nhận thấy M, N là 2 đoạn cùng có độ dài bằng 6, nên để \(M \cup N\)là một đoạn có độ dài bằng 10 thì ta có các trường hợp sau:

+) 2m – 1 ≤ m + 1 ≤ 2m + 5 ⟺ m ∈ \(\left[ { - 4;2} \right]\left( 1 \right)\)

Khi đó: \(M \cup N = \left[ {2m - 1;m + 7} \right]\) nên \(M \cup N\)là 1 đoạn có độ dài bằng 10 khi:

\(\left( {m + 7} \right) - \left( {2m - 1} \right) = 10 \Leftrightarrow m = - 2\left( {TM\left( 1 \right)} \right)\)

+) 2m – 1 ≤ m + 7 ≤ 2m + 5 ⟺ m \( \in \left[ {2;8} \right]\left( 2 \right)\)

Khi đó: \(M \cup N = \left[ {m + 1;2m + 5} \right]\) nên \(M \cup N\) là 1 đoạn có độ dài bằng 10 khi:

\(\left( {2m + 5} \right) - \left( {m + 1} \right) = 10 \Leftrightarrow m = 6\left( {TM\left( 2 \right)} \right)\)

Vậy tổng tất cả các giá trị của m để hợp của 2 tập hợp M và N là 1 đoạn có độ dài bằng 10 là –2 + 6 = 4.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×