Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).
a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;
b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh \(\widehat {MPK} = \widehat {MBC}\);
c) Chứng minh MI.MK = MP2;
d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: \(\left\{ \begin{array}{l}MI \bot AB\;\;\;\,\left( {gt} \right)\\MK \bot AC\;\;\left( {gt} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {AIM} = 90^\circ \\\widehat {AKM} = 90^\circ \end{array} \right.\)
Tứ giác AIMK có: \(\widehat {AIM} + \widehat {AKM} = 90^\circ + 90^\circ = 180^\circ \)
Þ AIMK nội tiếp đường tròn đường kính AM (đpcm)
Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A.
Þ OB ^ AB; OC ^ AC \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \)
Xét tứ giác ABOC có:
\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \)
Mà hai góc ở vị trí đối nhau
Suy ra tứ giác ABOC nội tiếp.
b) Ta có: MP ^ BC (gt) \( \Rightarrow \widehat {MPC} = 90^\circ \)
MK ^ AC (gt) \( \Rightarrow \widehat {MKC} = 90^\circ \)
\( \Rightarrow \widehat {MPC} + \widehat {MKC} = 90^\circ + 90^\circ = 180^\circ \)
Þ CPMK nội tiếp đường tròn.
\( \Rightarrow \widehat {MPK} = \widehat {MCK}\) (hai góc nội tiếp cùng chắn cung MK)
Mặt khác \(\widehat {MCK} = \widehat {MBC}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung MC)
\( \Rightarrow \widehat {MPK} = \widehat {MBC}\;\left( { = \widehat {MCK}} \right)\) (đpcm)
c) Ta có:
\(\widehat {MIB} + \widehat {MPB} = 90^\circ + 90^\circ = 180^\circ \)
Þ BPMI là tứ giác nội tiếp
\( \Rightarrow \widehat {MIP} = \widehat {MBC}\) (hai góc nội tiếp cùng chắn cung MP)
Mà \(\widehat {MPK} = \widehat {MBC}\) (cmt)
\( \Rightarrow \widehat {MPK} = \widehat {MIP}\;\left( { = \widehat {MBC}} \right)\)
Tương tự, ta cũng chứng minh được \(\widehat {MPI} = \widehat {MKP}\;\left( { = \widehat {MCB} = \widehat {MBI}} \right)\)
Xét ∆MIP và ∆MPK có:
\(\widehat {MPI} = \widehat {MKP}\) (cmt)
\(\widehat {MIP} = \widehat {MPK}\) (cmt)
Þ ∆MIP ᔕ ∆MPK (g.g)
\( \Rightarrow \frac = \frac \Rightarrow MI.MK = M{P^2}\) (đpcm)
d) Ta có: \(MI.MK = M{P^2}\)
\( \Rightarrow MI.MK.MP = M{P^3}\)
Để tích MI.MK.MP đạt GTLN Û MP đạt GTLN
Gọi H là hình chiếu của O lên BC Þ OH là hằng số (do BC cố định)
Gọi MO Ç BC = {D}
Ta có: MP £ MD; OH £ OD
Þ MP + OH £ MD + OD = MO
Þ MP + OH £ R
Þ MP £ R − OH
Þ MP lớn nhất bằng R − OH
Û O, H, M thẳng hàng hay M bằm chính giữa cung nhỏ BC
Vậy khi M nằm chính giữa cung nhỏ BC thì tích MI.MK.MP đạt GTLN.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |