Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét ∆ADB và ∆ADC, có:
AD là cạnh chung;
BD = CD (D là trung điểm BC);
AB = AC (giả thiết).
Do đó ∆ADB = ∆ADC (c.c.c).
b) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {BAD} = \widehat {CAD}\) và \(\widehat {ABD} = \widehat {ACD}\) (các cặp góc tương ứng).
Vậy AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {ADB} = \widehat {ADC}\) (cặp góc tương ứng).
Mà \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (cặp góc kề bù).
Khi đó \(\widehat {ADB} = \widehat {ADC} = 90^\circ \).
Vậy AD ⊥ BC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |