Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Gọi số cần tìm là \(n = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \), với 1 ≤ a1 ≤ 5 và a6 lẻ.
Đặt X = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Trường hợp 1: a1 lẻ.
Do a1 ∈ {1; 3; 5} nên a1 có 3 cách chọn.
Do a6 ∈ {1; 3; 5; 7; 9} và bỏ đi {a1} nên a6 có 4 cách chọn.
Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.
Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.
Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.
Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.
Áp dụng quy tắc nhân, ta có 3.4.8.7.6.5 = 20160 số tự nhiên thỏa mãn trường hợp 1.
Trường hợp 2: a1 chẵn.
Do a1 ∈ {2; 4} nên a1 có 2 cách chọn.
Do a6 ∈ {1; 3; 5; 7; 9} nên a6 có 5 cách chọn.
Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.
Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.
Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.
Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.
Áp dụng quy tắc nhân, ta có 2.5.8.7.6.5 = 16800 số tự nhiên thỏa mãn trường hợp 2.
Vậy theo quy tắc cộng, ta có tất cả 20160 + 16800 = 36960 số tự nhiên thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |