Bài tập  /  Bài đang cần trả lời

Cho mười chữ số 0, 1, 2, 3, …, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số khác nhau, nhỏ hơn 600000 được xây dựng từ 10 số trên.

Cho mười chữ số 0, 1, 2, 3, …, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số khác nhau, nhỏ hơn 600000 được xây dựng từ 10 số trên.
1 Xem trả lời
Hỏi chi tiết
9
0
0

Lời giải

Gọi số cần tìm là \(n = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \), với 1 ≤ a1 ≤ 5 và a6 lẻ.

Đặt X = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

Trường hợp 1: a1 lẻ.

Do a1 ∈ {1; 3; 5} nên a1 có 3 cách chọn.

Do a6 ∈ {1; 3; 5; 7; 9} và bỏ đi {a1} nên a6 có 4 cách chọn.

Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.

Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.

Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.

Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.

Áp dụng quy tắc nhân, ta có 3.4.8.7.6.5 = 20160 số tự nhiên thỏa mãn trường hợp 1.

Trường hợp 2: a1 chẵn.

Do a1 ∈ {2; 4} nên a1 có 2 cách chọn.

Do a6 ∈ {1; 3; 5; 7; 9} nên a6 có 5 cách chọn.

Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.

Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.

Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.

Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.

Áp dụng quy tắc nhân, ta có 2.5.8.7.6.5 = 16800 số tự nhiên thỏa mãn trường hợp 2.

Vậy theo quy tắc cộng, ta có tất cả 20160 + 16800 = 36960 số tự nhiên thỏa mãn yêu cầu bài toán.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×