LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho bộ nguồn gồm 3 pin giống nhau ghép nối tiếp mỗi pin có \(\xi = 2V,r = 0,5\Omega \) mắc trong mạch kín có \({R_1} = 1,5\Omega \); \({R_2} = {R_3} = 2\Omega \); \(R{ & _4} = 1\Omega \). Tính a) Cường độ dòng điện qua mạch chính và công suất qua R1. b) Công suất của nguồn. c) Hiệu suất của mạch.

Cho bộ nguồn gồm 3 pin giống nhau ghép nối tiếp mỗi pin có \(\xi = 2V,r = 0,5\Omega \) mắc trong mạch kín có \({R_1} = 1,5\Omega \); \({R_2} = {R_3} = 2\Omega \); \(R{ & _4} = 1\Omega \).

Tính

a) Cường độ dòng điện qua mạch chính và công suất qua R1.

b) Công suất của nguồn.

c) Hiệu suất của mạch.

1 trả lời
Hỏi chi tiết
6
0
0

Lời giải:

\[{R_{1\,}}nt\,({R_2}\parallel {R_3})\,nt\,{R_4}\]

a) \[{\xi _{bo}} = 3.2 = 6(V)\]

\[{r_{bo}} = 3.0,5 = 1,5(V)\]

Có \[{R_{23}} = \frac{{{R_2}{R_3}}}{{{R_2} + {R_3}}} = 1(\Omega )\]

\[{P_1} = I_1^2.{R_1} = {1,2^2}.1,5 = 2,16\,({\rm{W}})\]

b) \[{P_{\;nguon}} = \xi .I = 6.1,2 = 7,2\,\,({\rm{W}})\]

c) \[\frac{{{A_{c\'o {\rm{ }}\'i ch}}}}{{{A_{tp}}}} = \frac{{\xi .I.t}} = \frac{U}{\xi } = \frac{{I.{R_{td}}}}{{I({R_{td}} + r)}} = \frac{{{R_{td}}}}{{{R_{td}} + r}}\]

\[ \Rightarrow H = \frac{{{A_{c\'o {\rm{ }}\'i ch}}}}{{{A_{tp}}}}.100\% = \frac{{{R_{td}}}}{{{R_{td}} + r}}.100\% = 70\% \]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Vật lý Lớp 12 mới nhất
Trắc nghiệm Vật lý Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư