Bài tập  /  Bài đang cần trả lời

Một chất điểm có khối lượng \(100{\rm{\;g}}\) dao động điều hoà trên quỹ đạo là đoạn thẳng \({\rm{MN}}\) (dài hơn \(8{\rm{\;cm}}\)). Tại điểm \({\rm{P}}\) cách \({\rm{M}}\) một khoảng \(4{\rm{\;cm}}\) và tại điểm \({\rm{Q}}\) cách \({\rm{N}}\) một khoảng \(2{\rm{\;cm}}\), chất điểm có động năng tương ứng là \({32.10^{ - 3}}{\rm{\;J}}\) và \({18.10^{ - 3}}{\rm{\;J}}\). Tính tốc độ trung bình khi vật đi từ \({\rm{P}}\) đến \({\rm{Q}}\).

Một chất điểm có khối lượng \(100{\rm{\;g}}\) dao động điều hoà trên quỹ đạo là đoạn thẳng \({\rm{MN}}\) (dài hơn \(8{\rm{\;cm}}\)). Tại điểm \({\rm{P}}\) cách \({\rm{M}}\) một khoảng \(4{\rm{\;cm}}\) và tại điểm \({\rm{Q}}\) cách \({\rm{N}}\) một khoảng \(2{\rm{\;cm}}\), chất điểm có động năng tương ứng là \({32.10^{ - 3}}{\rm{\;J}}\) và \({18.10^{ - 3}}{\rm{\;J}}\). Tính tốc độ trung bình khi vật đi từ \({\rm{P}}\) đến \({\rm{Q}}\).

1 Xem trả lời
Hỏi chi tiết
27
0
0
Trần Bảo Ngọc
12/09/2024 13:29:17

Tốc độ tại P: \({v_P} = \sqrt {\frac{{2{W_{dP}}}}{m}} = 80{\rm{\;cm/s}}\); tại Q: \({v_Q} = \sqrt {\frac{{2{W_{dQ}}}}{m}} = 60{\rm{\;cm/s}}\).

Do \({v_P} > {v_Q}\) nên li độ \(\left| \right| < \left| \right|:\left\{ {\begin{array}{*{20}{l}}{\left| \right| = A - 4}\\{\left| \right| = A - 2}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{l}}{v_P^2 = {\omega ^2}\left( {{A^2} - x_P^2} \right)}\\{v_Q^2 = {\omega ^2}\left( {{A^2} - x_Q^2} \right)}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{v_P^2 = 8{\omega ^2}\left( {A - 2} \right)}\\{v_Q^2 = 4{\omega ^2}\left( {A - 1} \right)}\end{array}} \right.} \right.\)

Giải hệ ta được: \(A = 10{\rm{\;cm}}\) và \(\omega = 10{\rm{rad}}/{\rm{s}}\).

Quãng đường \(PQ = OP + OQ\)\( = \left( {A - 4} \right) + \left( {A - 2} \right) = 14{\rm{\;cm}}{\rm{.\;}}\)

Thời gian vật đi từ P đến Q là \({\rm{\Delta }}t\) với: \({\rm{\Delta }}t = \frac{{{\rm{\Delta }}\varphi }}{\omega }\).

\({\rm{\Delta }}\varphi = \pi - \left( {{\varphi _1} + {\varphi _2}} \right) = \frac{\pi }{2}\), với \({\rm{cos}}{\varphi _1} = \frac{{{\rm{OP}}}}{{\rm{A}}};{\rm{cos}}{\varphi _2} = \frac{{{\rm{OQ}}}}{{\rm{A}}} \Rightarrow {\rm{\Delta t}} = \frac{{\rm{T}}}{4} = \frac{\pi }\)

\( \Rightarrow \) Tốc độ trung bình khi vật đi từ P đến Q: \(\overline v = \frac{{{\rm{\Delta }}t}} = \frac{{\frac{\pi }}} \approx 89{\rm{\;cm/s}}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×