ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆AMH và ∆ANH có:
\(\widehat {AMH} = \widehat {ANH} = 90^\circ \)
Cạnh AH chung
AM = AN (chứng minh trên)
Do đó ∆AMH = ∆ANH (cạnh huyền – cạnh góc vuông)
Suy ra \(\widehat {MAH} = \widehat {NAH}\) (hai góc tương ứng)
Suy ra AH là phân giác góc MAN.
Mặt khác AO là phân giác góc MAN nên AH và AO trùng nhau.
Do đó ba điểm A, O, H thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |