Cho hai đa thức: P(x) = x2(2x3 – 3) + 5x4 – 7x3 + x2 – x;
Q(x) = 3x4 – 2x2(x3 – 3) – 2x3 + x2 – 1.
a) Thu gọn và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tìm đa thức R(x) biết P(x) = Q(x) + R(x). Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức R(x).
c) Chứng tỏ rằng x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giải:
a) P(x) = x2(2x3 – 3) + 5x4 – 7x3 + x2 – x;
= 2x5 – 3x2 + 5x4 – 7x3 + x2 – x
= 2x5 + 5x4 – 7x3 – 2x2 – x.
Q(x) = 3x4 – 2x2(x3 – 3) – 2x3 + x2 – 1
= 3x4 – 2x5 + 6x2 – 2x3 + x2 – 1
= –2x5 + 3x4 – 2x3 + 7x2 – 1.
b) Ta có P(x) = Q(x) + R(x)
Suy ra R(x) = P(x) – Q(x)
R(x) = (2x5 – 3x2 + 5x4 – 7x3 + x2 – x) – (3x4 – 2x5 + 6x2 – 2x3 + x2 – 1)
= 2x5 – 3x2 + 5x4 – 7x3 + x2 – x – 3x4 + 2x5 – 6x2 + 2x3 – x2 + 1
= 4x5 + 2x4 – 5x3 – 9x2 – x + 1.
Đa thức R(x) có bậc là 5, hệ số cao nhất là 4, hệ số tự do là 1.
c) Ta có P(x) = 2x5 + 5x4 – 7x3 – 2x2 – x có hệ số tự do là 0 nên x = 0 là một nghiệm của đa thức.
Q(0) = –2.05 + 3.04 – 2.03 + 7.02 – 1 = – 1.
Do đó x = 0 không là nghiệm của đa thức Q(x).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |