Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho \(BM = \frac{1}{3}AB\), trên cạnh AC lấy điểm N sao cho \(CN = \frac{1}{3}AC\). Nối B với N, C với M, hai đoạn thẳng BN và CM cắt nhau tại O. Hãy so sánh diện tích tam giác OMB và ONC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì \(BM = \frac{1}{3}AB\) nên \({S_{CMB}} = \frac{1}{3}{S_{ABC}}\)
\(CN = \frac{1}{3}AC\) nên \({S_{CNB}} = \frac{1}{3}{S_{ABC}}\)
Suy ra \({S_{CMB}} = {S_{NBC}}\)
Mà \({S_{CMB}} = {S_{OBC}} + {S_{BMO}}\), \({S_{CNB}} = {S_{OBC}} + {S_{CNO}}\)
Do đó \({S_{BMO}} = {S_{CNO}}\)
Vậy diện tích tam giác OMB bằng diện tích tam giác ONC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |