Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi AD và BE lần lượt là hai đường cao của ∆ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của ∆ABC
⇒ CH là đường cao thứ 3 của ∆ABC
Do đó CH ⊥ AB (1)
mà BD ⊥ AB (gt) ⇒ CH // BD
Có BH ⊥ AC (BE là đường cao)
CD ⊥ AC
Do đó BH // CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
b) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC ⇒ M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét ∆AHD có: HM = DM; OA = OD
Suy ra OM là đường trung bình của ∆AHD.
Do đó OM = \(\frac{1}{2}\) AH hay AH = 2OM.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |