Chứng minh rằng an−bn=a+ban−1−bn−1−aban−2−bn−2, với n là số tự nhiên và n>1.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phương pháp:
Dựa vào quy tắc nhân đa thức với đa thức và công thức:an.am=an+m.
Cách giải:
Ta có:VP=a+ban−1−bn−1−aban−2−bn−2
=a.an−1+b.an−1−a.bn−1−b.bn−1−ab.an−2+ab.bn−2
=an+ban−1−abn−1−bn−ban−1+abn−1
=an−bn=VT
Vậy an−bn=a+ban−1−bn−1−aban−2−bn−2 với mọi n∈ℕ,n>1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |