Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c với 0 < c < a. Ta chọn hệ trục tọa độ Oxy có gốc là trung điểm của đoạn thẳng F1F2. Trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 8).
Khi đó, F1(– c; 0), F2(c; 0) là các tiêu điểm của elip (E). Giả sử điểm M(x; y) thuộc elip (E). Chứng minh rằng:
a) MF12 = x2 + 2cx + c2 + y2;
b) MF22 = x2 – 2cx + c2 + y2;
c) MF12 – MF22 = 4cx.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) MF12 = [x – (– c)]2 + (y – 0)2 = (x + c)2 + y2 = x2 + 2cx + c2 + y2.
b) MF22 = (x – c)2 + (y – 0)2 = x2 – 2cx + c2 + y2.
c) MF12 – MF22 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |