Trong không gian Oxyz, cho mặt phẳng (α): x – 2y – 2z + 9 = 0 và điểm A(2; −1; 3).
a) Tính khoảng cách từ A đến mặt phẳng (α).
b) Viết phương trình mặt phẳng (β) đi qua A và song song với (α).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Khoảng cách từ A đến mặt phẳng (α) là: \(d\left( {A,\left( \alpha \right)} \right) = \frac{{\left| {2 - 2.( - 1) - 2.3 + 9} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }}\) = \(\frac{7}{3}\).
b) Phương trình mặt phẳng (β) đi qua A và song song với (α) có vectơ pháp tuyến
\(\overrightarrow {{n_\beta }} = \overrightarrow {{n_\alpha }} \)= (1; −2; −2).
Do đó, ta có phương trình mặt phẳng (β) là: 1(x – 2) – 2(y + 1) – 2(z – 3) = 0
hay x – 2y – 2z + 2 = 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |