Trong không gian Oxyz, cho đường thẳng d: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 1 - t\\z = - 3 + 2t\end{array} \right.\) và mặt phẳng (P): x – y – z = 0.
a) Tìm tọa độ giao điểm I của đường thẳng d và mặt phẳng (P).
b) Viết phương trình đường thẳng d' nằm trên mặt phẳng (P) sao cho d' cắt và vuông góc với d.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Theo đề, I là giao của đường thẳng d và mặt phẳng (P).
Gọi I(2 + 3t; −1 – t; – 3 + 2t), thay vào phương trình mặt phẳng (P) được
2 + 3t – (−1 – t) – (−3 + 2t) = 0
⇔ 2t + 6 = 0
⇔ t = −3.
Vậy I(−7; 2; −9).
b) Ta có vectơ pháp tuyến của mặt phẳng (P) là \(\overrightarrow \) = (1; −1; −1), vectơ chỉ phương của đường thẳng d là \(\overrightarrow \) = (3; −1; 2).
Do d' nằm trên (P), cắt đường thẳng d và vuông góc với d nên đường thẳng d' đi qua điểm I(−7; 2; −9) và nhận \(\left[ {\overrightarrow ,\overrightarrow } \right]\) làm vectơ chỉ phương.
Ta có: \(\left[ {\overrightarrow ,\overrightarrow } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\2&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 1}\\3&{ - 1}\end{array}} \right|} \right)\) = (−1; −5; 2).
Phương trình tham số của đường thẳng d' là \(\left\{ \begin{array}{l}x = - 7 - t\\y = 2 - 5t\\z = - 9 + 2t\end{array} \right.\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |