Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình x2 + y2 + z2 = 1. Từ vị trí A\(\left( {\frac{1}{2};\frac{1}{2};\frac{1}{{\sqrt 2 }}} \right)\), người ta dự định đào một hầm xuyên qua lòng đất theo hướng \(\overrightarrow v \) = (2; 2; −3). Tính độ dài đường hầm cần đào.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đường hầm thuộc đường thẳng d đi qua A\(\left( {\frac{1}{2};\frac{1}{2};\frac{1}{{\sqrt 2 }}} \right)\) và nhận \(\overrightarrow v \) = (2; 2; −3) làm vectơ chỉ phương.
Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = \frac{1}{2} + 2t\\y = \frac{1}{2} + 2t\\z = \frac{1}{{\sqrt 2 }} - 3t\end{array} \right.\).
Gọi B là điểm cuối cùng của đường hầm cần đào.
Khi đó, B là giao điểm của đường thẳng ∆ và mặt cầu (S). Tọa độ B có dạng
B\(\left( {\frac{1}{2} + 2t;\frac{1}{2} + 2t;\frac{1}{{\sqrt 2 }} - 3t} \right)\) (với t ≠ 0 để B khác A) và thỏa mãn phương trình mặt cầu (S), tức là: \({\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{{\sqrt 2 }} - 3t} \right)^2} = 1\)
⇔ 17t2 + (2 −3\(\sqrt 2 \))t = 0 ⇒ t = \(\frac{{3\sqrt 2 - 2}}\).
Suy ra AB = \(\sqrt {{{\left( {2t} \right)}^2} + {{\left( {2t} \right)}^2} + {{\left( { - 3t} \right)}^2}} = \left| t \right|\sqrt {17} = \frac{{3\sqrt 2 - 2}}{{\sqrt {17} }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |