Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = f(x) = \frac\) có đồ thị (C). Gọi tổng khoảng cách từ một điểm (x; y) ∈ (C), với x > 3, tới hai đường tiệm cận của (C) là g(x). Tìm các đường tiệm cận của đồ thị hàm số y = g(x).

Cho hàm số \(y = f(x) = \frac\) có đồ thị (C). Gọi tổng khoảng cách từ một điểm (x; y) ∈ (C), với x > 3, tới hai đường tiệm cận của (C) là g(x). Tìm các đường tiệm cận của đồ thị hàm số y = g(x).

1 Xem trả lời
Hỏi chi tiết
47
0
0
Phạm Văn Bắc
12/09 17:47:29

Đồ thị hàm số f(x) có đường tiệm cận đứng là đường thẳng x = 3 và đường tiệm cận ngang là đường thẳng y = 1.

Khoảng cách từ điểm M(x; y) ∈ (C), x > 3 đến tiệm cận đứng là d1 = x – 3.

Khoảng cách từ điểm M đến đường tiệm cận ngang là d2 = \(\frac - 1 = \frac{5}\).

Vậy g(x) = d1 + d2 = x – 3 + \(\frac{5}\).

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x--3 + \frac{5}\;} \right] = - \infty .\);

           \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {x--3 + \frac{5}\;} \right] = + \infty .\)

Do đó đồ thị hàm số g(x) không có tiệm cận ngang

           \(\mathop {\lim }\limits_{x \to {3^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left[ {x--3 + \frac{5}\;} \right] = - \infty .\);

           \(\mathop {\lim }\limits_{x \to {3^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left[ {x--3 + \frac{5}\;} \right] = + \infty .\)

Do đó, đường thẳng x = 3 là đường tiệm cận đứng của đồ thị hàm số.

           \(\mathop {\lim }\limits_{x \to + \infty } \left[ {g\left( x \right) - (x - 3)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x--3 + \frac{5} - (x - 3)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{5} = 0.\)

Do đó đường thẳng y = x – 3 là đường tiệm cận xiên của đồ thị hàm số.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×