Ở 0℃, sự mất nhiệt H (tính bằng Lcal/m2h, ở đây Kcal là kilocalories và 1 Kcal = 1 000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức
H = \(33\left( {10\sqrt v - v + 10,45} \right)\)
trong đó v là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
a) Xét tính đơn điệu của hàm số H và giải thích ý nghĩa thực tiễn của kết quả nhận được.
b) Tìm tốc độ thay đổi khi H khi v = 2 m/s. giải thích ý nghĩa thực tiễn của kết quả này.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Khảo sát đơn điệu của hàm số H
Ta có: H = \(33\left( {10\sqrt v - v + 10,45} \right)\)
H'(v) = 33\(\left( {\frac{5}{{\sqrt v }} - 1} \right)\), v > 0
H'(v) = 0 ⇔ v = 25.
Ta có bảng biến thiên của hàm số:
Ta có thể thấy mức nhiệt mất từ cơ thể tăng khi tốc độ gió tăng. Tuy nhiên, nó đạt tối đa tại mức gió là 25 m/s, sau đó giảm dần khi tốc độ gió tiếp tục tăng.
b) Ta có: H'(2) = 33\(\left( {\frac{5}{{\sqrt 2 }} - 1} \right)\) ≈ 83,673.
Điều này có nghĩa là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ 2 m/s lên 3 m/s là khoảng 83,673 (Kcal/m2h).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |